
ISSN: 0128-7680
Pertanika J. Sci. & Technol. 20 (1): 89 – 96 (2012) © Universiti Putra Malaysia Press

Received: 1 October 2010
Accepted: 4 March 2011
*Corresponding Author

Exact Parallel Plurality Voting Algorithm for Totally Ordered Object
Space Fault-Tolerant Systems

Abbas Karimi1*, Faraneh Zarafshan1, Adznan Jantan2, Abdul Rahman Ramli2,
M. Iqbal b. Saripan2 and S. A. R. Al-Haddad2

1Department of Computer Engineering, Faculty of Engineering,
Arak Branch, Islamic Azad University, Arak, Iran.

2Department of Computer and Communication Systems Engineering,
Faculty of Engineering, Universiti Putra Malaysia,

43400 UPM, Serdang, Selangor, Malaysia
*E-mail: A-karimi@iau-arak.ac.ir

ABSTRACT
Plurality voter is one of the commonest voting methods for decision making in highly-reliable applications
in which the reliability and safety of the system is critical. To resolve the problem associated with sequential
plurality voter in dealing with large number of inputs, this paper introduces a new generation of plurality voter
based on parallel algorithms. Since parallel algorithms normally have high processing speed and are especially
appropriate for large scale systems, they are therefore used to achieve a new parallel plurality voting algorithm
by using (n/log n) processors on EREW shared-memory PRAM. The asymptotic analysis of the new proposed
algorithm has demonstrated that it has a time complexity of O(log n) which is less than time complexity of
sequential plurality algorithm, i.e. Ω (n log n).

Keywords: Fault-tolerant, Parallel Algorithm, PRAM, Voting Algorithm

INTRODUCTION
Fault-tolerance is the knowledge of manufacturing the computing systems which are able to function
properly even in the presence of faults. These systems compromise a wide range of applications,
such as embedded real-time systems, commercial interaction systems and e-commerce systems, Ad-
hoc networks, transportation (including rail-way, aircrafts and automobiles), nuclear power plants,
aerospace and military systems, and industrial environments in all of which, a precise inspection or
correctness validation of the operations must occur (e.g. where poisonous or flammable materials
are kept) (Latif-Shabgahi et al., 2004). In these systems, the aims are to decrease the probability
of the system hazardous behaviour and to keep the systems functioning even in the occurrence of
one or more faults.

Redundancy is one of the important methods in achieving fault-tolerance and it can be
implemented in three forms, including static (fault masking methods), dynamic (fault detection,
fault diagnosis, fault isolation and fault location), and hybrid (masking faults and fault detection
and location).

The aim of static redundancy is masking the effect of fault in the output of the system.
N-Modular Redundancy (NMR) and N-Version Programming (NVP) are two principal methods of
static redundancy in hardware and software, respectively. Three modular redundancy (TMR) is

Abbas Karimi et al.

90 Pertanika J. Sci. & Technol. Vol. 20 (1) 2012

the simplest form of NMR which is formed from N=3 redundant modules and a voter unit which
arbitrates among the modules’ outputs (Fig. 1).

Fig. 1: TMR System

Voter performs a voting algorithm in order to arbitrate among different outputs of redundant
modules or versions and to mask the effect of fault(s) from the system output. Many voting
algorithms have been defined in the literature, each with particular strengths and weaknesses that
make a particular voting algorithm more proper than the other one in a given application.

Plurality voter is one of several voting algorithms which is applied in the fault-tolerant control
systems. The main advantages of this voter are high reliability (Blough et al., 1990) and high
availability (Yacoub et al., 2002), in comparison with other popular voting algorithms. On contrary
to some severe voters like majority and its extended forms, such as smoothing and predictive,
plurality voter can operate flexibly if less than majority elements are in agreement (Latif-Shabgahi
et al., 2004).

In this paper, the parallel algorithms are used on the EREW shared-memory systems to present
a new generation of voter – and this is known as Parallel Plurality Voter (PPV) – which provides the
plurality voter extension without enlarging the calculations, and is suitable for large-scale systems
and with optimal processing time.

The current paper is organized in the following manner. In the next section, background and
related works are described, whereas the sequential and parallel plurality voting algorithms are
presented in later sections. Result and discussion section deals with the performance analysis of
the new algorithm and its comparison with the sequential algorithm. Finally, the conclusions and
future works are explained.

BACKGROUND AND RELATED WORKS
Voting algorithms have been extensively applied in situations where choosing an accurate result
out of the outputs of several redundant modules is required. Generalized voters including majority,
plurality, median and weighted average were first introduced by Lorczak et al (1989).

Majority voter is perhaps the most applicable voter that produces an output among n variant
results, where at least n 1 2+^ h6 @ variant results agree (Latif-Shabgahi et al., 2004). Meanwhile,
plurality voter is a relax form of majority voter, in which even if less than n 1 2+^ h6 @ variant results
are in agreement, voter can report consensus. Thus, plurality and majority are actually extended
forms of m-out-of-n voting, in which at least m modules out of n modules should be in agreement;
otherwise, voter cannot produce the output. The m-out-of-n voting method is a suitable choice
for the systems where the number of the voter inputs is large. The other generalized voter is the
median voter that always chooses the mid-value of voter inputs as the system output. The most
significant limitation of this particular algorithm is that the number of the voter inputs is assumed

Exact Parallel Plurality Voting Algorithm for Totally Ordered Object Space Fault-Tolerant Systems

91Pertanika J. Sci. & Technol. Vol. 20 (1) 2012

to be odd (Lorczak et al., 1989). In the weighted average algorithm, the weighted mean of the
input values is calculated as the voting result. The weight value is assigned to each voter input in
various methods (Latif-Shabgahi, 2004; Latif-Shabgahi et al., 2003; Lorczak et al., 1989; Tong et
al., 1991), and then, the calculated weights, wi, are used to provide the voter output, y=∑wi.xi/∑wi,
where xi refers to each voter inputs and y is the voter output. Average voter is a special case of the
weighted average voter in which all the weights are assumed to be equal to 1/n. Two latest methods
amalgamate variant results to make the output (Latif-Shabgahi et al., 2004); as a result, the output
may be clearly different from the input values. Although this feature is useful in such applications
as image processing filters (to merge the results of the adjacent pixels), in many safety critical and
high reliable systems the voters like majority, plurality, and median are preferred, particularly due
to their selecting strategy.

Based on the type of agreement, Plurality voter can be exact or inexact. In the exact voting,
agreement achievement requires that the redundant results to be exactly the same, while in the inexact
voting, agreement means that the multiple results might be different. Nevertheless, their difference
from each other is smaller than a predefined, application specific threshold (Latif-Shabgahi et al.,
2004). Although inexact voting is closer to real conditions, to avoid the complexities due to selecting
threshold, and to simply design parallel algorithm, the research is limited to the exact plurality voter.

The other important issue about all the above mentioned voters, including plurality, is their
dependency on the structure of the input space (Parhami, 1992, 1994). Hence, while the number
of voter inputs increases, there will be increases in the complexity of calculations, in addition to
harmful effects on the speed of processing in the control system.

To address the problems of plurality voter mentioned, an effective parallel plurality algorithm
was proposed based on the shared memory EREW by using the parallel algorithms.

PARALLEL ALGORITHM IN A SHAREDMEMORY SYSTEM
So far, parallel voters have been taken into account in the studies by several authors (Karimi et
al., 2010; Lei et al., 1993; Parhami, 1996). In addition, an optimal parallel average voter has been
designed and analyzed in Karimi et al. (2010). It has also been demonstrated that the time complexity
of the mentioned algorithm is O(log n) with n/log n processors in an EREW shared memory system.
In Lei et al. (1993), an efficient parallel algorithm was proposed to find the majority element in
shared-memory and message passing parallel systems and its time complexity was determined,
while an approach for the parallelized m-out-of-n voting through divide-and-conquer strategy was
presented and analyzed in Parhami (1996).

Employing parallel algorithms is of the beneficial techniques to address the problems of
sequential plurality voter for large object space applications such as public health systems,
geographical information systems, Data Fusion, Mobile Robots, Sensor Networks, etc. Meanwhile,
conducting large calculative operations using parallel algorithms is faster due to the modern
processors, compared to when such operations are conducted by sequential algorithm. Moreover,
multiple processing resources typically available in the applications dealing with a large number
of inputs can be utilized for performing parallel voting algorithm (Parhami, 1996).

In this section, a new parallel plurality voting algorithm is presented on EREW shared-memory
systems. First, sequential plurality voting is introduced and this is followed by introducing and
describing the parallel plurality algorithm with inspirations from the functions of this algorithm and
using divide-and-conquer method and Brent’s theorem. Divide-and-conquer strategy and Brent’s
theorem are used in the designation and the optimization of the parallel plurality voting algorithm,
respectively. To compare the new algorithm with plurality voter in this research, the asymptotic
analysis was employed.

Abbas Karimi et al.

92 Pertanika J. Sci. & Technol. Vol. 20 (1) 2012

Sequential Plurality Voting
The algorithm for the sequential plurality voter in totally ordered space for n inputs is presented in
Parhami (1994), as follows:

Procedure Exact Sequential Plurality Voting (Totally Ordered)

Sort (ascending order) in place the set of records (xi , vi) with xi as key. Use the end –marker
(xn+1, vn+1) = (∞, 0).

y:=z:=x1;
u:=w:=v1;
For i=2 to n+1 do

While xi=z do
u:=u+vi;
i:=i+1;

End While.
If u>w Then

w:=u;
y:=z;

End If.
z:=xi;
u:=vi;

End For.

End.//end of procedure//

Parallel Plurality Voting
Basically, there are two architectures for the multi-processor systems. One is the shared-memory
multi-processor system and the other is message passing (Lei et al., 1993). In a shared-memory
parallel system, it is assumed that n processor has either shared the public working space or has a
common public memory.

To present the parallel plurality voting (PPV) in the PRAM machines with EREW shared-
memory technology, the following assumptions are taken into account:
• Array A [1...n] with n elements, comprises a1, a2, …, an ,where each ai , i=1…n, is the output

of ith module.
• The number of redundant modules, n, is considered as the power of 2.
• Array A is divided to p= (n/log n) sub-arrays each of which contains at most log n element.
• Divide-and-conquer method is used to implement the algorithm.
• For enhancing the algorithm, the number of required processors is assumed equal to the number

of sub-arrays i.e. p.

Exact Parallel Plurality Voting Algorithm for Totally Ordered Object Space Fault-Tolerant Systems

93Pertanika J. Sci. & Technol. Vol. 20 (1) 2012

The pseudo-code of our optimal parallel plurality voter (PPV) is presented as follows:

Pseudo-code of parallel plurality voter
Procedure Exact Parallel-Plurality Voting (Totally Ordered Space)

Input: X is an array of the n elements x1,x2,…,xn where n=2k .
Output: Return Y as the output of the Parallel Plurality Voting (PPV).
Step 1. // Partitioning X //
X is subdivided into

log
p n

n
= subsequence’s Xi of length log n each, where 1≤i≤p;

Step 2. // Find the number of iterative elements (k) in each partition //

(2.1) k ← 1

(2.2) For i=1 to p do in Parallel
Zi ← X[(i-1)log n +1]
ui ← 1 // set tally for each element //

For j=((i-1)log n +2) To Min{i*log n, n} Do
If Xj=Zi Then

Find iterative Elements in each partition.
ui ← ui +1 // update tally //

Else
k ← k+1
Zk ← Xj

uk ← vj

End If.
End For.

End For.
Step 3.

(3.1) IF k=n Then // n is the number of elements //
“There is no plurality agreement”

Else

Z is subdivided into
log

p k
k

= subsequence’s Zi of

Length (log k) each, where 1≤i≤p;
(3.2) Broadcast Zi to processor Pi

(3.3) L← 1
// Find Repetitive Elements in other partitions and update its tally //

(3.4) For i=0 to logp 1-^ h do
For j=1 to p do in Parallel

IF (j is Odd) Then
Tj ← Z[(j-1)*log k +1]
∀ S ∈ {((j-1)*log k +2) and Min {2(i+j)*log k,(j-1)k}}
Merge each of pair subsequence (Tj ,Tj+1) and do in Parallel.

IF Tj=Zs Then
uj ← uj +1

Abbas Karimi et al.

94 Pertanika J. Sci. & Technol. Vol. 20 (1) 2012

Else
W(0,L) ← Tj; W(1,L) ← uj;
L ← L+1; Tj=Zs; uj ← us

End IF.
End IF.

End for.
End for.

// Matrix W is an amalgamation of array X and the number of each element iteration(tally) //
Step4.

(4.1) For i=1 to (L/log L) do in Parallel
Y(0,i) ← W(0, (i-1)*log L +1)
Y(1,i) ← W(1, (i-1)*log L +1)

For j=((i-1)*log L +2) To Min{i*log L, L} do
If Y(1,j)> Y(1,i) Then

Y(1,i) ← Y(1,j)
Y(0,i) ← Y(0,j)

End If.
End For.

End For.
// Return the Result if PPV exists //
(4.2) For i=0 to log

logL
L 1-c mc m do

For j=1 to (L/log L) do in Parallel
If (j is Odd) Then

If Y(1,(j-1)*log L +1))> Y(1,(j*log L +1)) Then
Result ← Y(0,(j-1)*log L +1))

Else
Result ← Y(0,(j*log L +1))

End IF.
End IF.

End For.
End For.

End.

In next section, the four steps of the algorithm PPV are examined and compared with the time
complexity of the sequential algorithm given in Sequential Plurality Voting section. In order to define
an optimal parallel plurality voting with less time complexity and minimal number of processors, the
Brent’s theorem (Brent, 1973) was used to partition the input elements into predetermined groups
in the PRAM systems with p processor.

RESULTS AND DISCUSSION
In this section, both the parallel and sequential plurality voting algorithms introduced in previous
sections were analyzed by computing the complexity of the algorithms and discussions on each
step in order to highlight the efficiency of the new parallel algorithm. Hence, to do so, Ts(n) is

Exact Parallel Plurality Voting Algorithm for Totally Ordered Object Space Fault-Tolerant Systems

95Pertanika J. Sci. & Technol. Vol. 20 (1) 2012

defined as the function of executing time of the sequential plurality voting algorithm and Tp(n) as
the function of the executing time of the parallel voting algorithm in which p is the number of the
processors. As mentioned in sub-section of Sequential Plurality Voting, the sequential plurality
voter needs the time complexity Ts(n)=O(n log n), while parallel algorithm consumes the constant
time of O(1) to divide array X into p sub-arrays (partitioning X) having the maximal length of (log
n) which has been indicated in step 1 of PPV.

In order to find the number of iterative elements in array X, i.e. the value of counter k in each
partition, p, there is a need to time complexity of O(log n) in step 2. In step 3, if value k is equivalent
to the number of inputs of array X, the algorithm will no longer have any result because it does not
achieve plurality agreement. The time complexity of step 3.1 is O(1), other than if the value k is
opposite to n, the number of the countered elements is arranged, which are stored as matrix Z in
step 2, into p partitions by using the approach of step 1. The time complexities of the procedures
in steps 3.2, 3.3 and 3.4 are respectively O(1), O(1) and log

log k
k

Oc m or O(log k), which is smaller
than or equal to O(log n).

The result of step 3 is matrix W in which row zero refers to the value of algorithm’s input,
and the first row represents the tally of each element in the partition. In step 4, the later row in
several partitions should be compared to find the iterative elements (step 4.1). Finally, the plurality
element in step 4.2 is possibly considered. The procedures in step 4 totally require O(log l)<O(log
k)<O(log n), and therefore:

Tp(n)= O(1)+O(log n)+ O(log k)+ O(log l). (1)

It is concluded that the totally complexity of the parallel plurality voting for l ≤ k ≤ n is:

Tp(n)=O(log n). (2)

Since the execution time of the parallel plurality voter is O(log n), it is able to run faster than
the sequential plurality voter with the complexity of Ω(n log n). Furthermore, it can be obviously
seen that the total number of the required processors in the parallel algorithm does not exceed (n/
log n). Hence, taking into account the execution time and number of processors needed, the cost
and time complexity of the proposed algorithm are optimal.

CONCLUSIONS
In this paper, an optimal parallel algorithm has been proposed to find the plurality agreement among
the results of n redundant modules in the parallel shared-memory systems in the EREW model. As
seen in results and discussion, the execution time of the sequential algorithm is Ω(n log n), whereas
it is O(log n) in the proposed parallel algorithm. Hence, the time complexity of the parallel plurality
voter is less than its sequential peer.

The parallel plurality voter has also been shown to resolve the problem associated with
sequential plurality voter in dealing with a large number of inputs. This parallel algorithm can
be extended to unordered arrays that are implemented in future on Bus, Hyper Cube and Mesh
typologies in the message passing systems.

REFERENCES
Blough, D. M., & Sullivan, G. F. (1990). A Comparison of Voting Strategies for Fault-tolerant Distributed

Systems. Paper presented at the Ninth Symposium on Reliable Distributed Systems.

Abbas Karimi et al.

96 Pertanika J. Sci. & Technol. Vol. 20 (1) 2012

Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ.: Prentice-Hall.

Karimi, A., Zarafshan, F., Jantan, A. B., Ramli, A. R. B., & Saripan, M. I. B. (2010). An Optimal Parallel
Average Voting for Fault-tolerant Control Systems. Paper presented at the 2010 International Conference
onNetworking and Information Technology (ICNIT).

Latif-Shabgahi, G. (2004). A Novel Algorithm for Weighted Average Voting Used in Fault-Tolerant Computing
Systems. Microprocessors and Microsystems, 28(7), 357-361.

Latif-Shabgahi, G., Bass, J. M., & Bennett, S. (2004). A Taxonomy for Software Voting Algorithms Used in
Safety-Critical Systems. IEEE Transactions on Reliability, 53(3), 319- 328.

Latif-Shabgahi, G., Hirst, A. J., & Bennett, S. (2003). A Novel Family of Weighted Average Voters for Fault
Tolerant Computer Systems. Paper presented at the Proceedings of ECC03: European Control Conference,
Cambridge, UK.

Lei, C. L., & Liaw, H. T. (1993). Efficient Parallel Algorithms for Finding the Majority Element. Journal of
Information Sceince and Engineering, 9, 319-334.

Lorczak , P. R., Caglayan, A. K., & Eckhardt, D. E. (1989). A Theoretical Investigation of Generalized Voters
for Redundant Systems. Paper presented at the FTCS-19. Digest of Papers. Nineteenth International
Symposium on Fault-Tolerant Computing, chicago, USA.

Parhami, B. (1992). Optimal Algorithms for Exact, Inexact and Approval Voting. Paper presented at the 22nd
International Symposium on Fault-Tolearnt Computing (FTCS-22), Boston, N.A, USA.

Parhami, B. (1994). Voting Algorithms. IEEE Transactions on Reliability, 43, 617-629.

Parhami, B. (1996). Parallel Threshold Voting. The Computer Journal, 39(8), 692-700.

Tong, Z., & Kain, R. Y. (1991). Vote Assignments in Weighted Voting Mechanisms. IEEE Transactions on
Computers, 40(5), 664-667.

Yacoub, S., Lin, X., & Burns, J. (2002). Analysis of the Reliability and Behavior of Majority and Plurality
Voting Systems. Palo Alto: Hewlett-Packard Company.

