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ABSTRACT
Plurality voter is one of the commonest voting methods for decision making in highly-reliable applications 
in which the reliability and safety of the system is critical.  To resolve the problem associated with sequential 
plurality voter in dealing with large number of inputs, this paper introduces a new generation of plurality voter 
based on parallel algorithms.  Since parallel algorithms normally have high processing speed and are especially 
appropriate for large scale systems, they are therefore used to achieve a new parallel plurality voting algorithm 
by using (n/log n) processors on EREW shared-memory PRAM.  The asymptotic analysis of the new proposed 
algorithm has demonstrated that it has a time complexity of O(log n) which is less than time complexity of 
sequential plurality algorithm, i.e. Ω (n log n).
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INTRODUCTION
Fault-tolerance is the knowledge of manufacturing the computing systems which are able to function 
properly even in the presence of faults.  These systems compromise a wide range of applications, 
such as embedded real-time systems, commercial interaction systems and e-commerce systems, Ad-
hoc networks, transportation (including rail-way, aircrafts and automobiles), nuclear power plants, 
aerospace and military systems, and industrial environments in all of which, a precise inspection or 
correctness validation of the operations must occur (e.g. where poisonous or flammable materials 
are kept) (Latif-Shabgahi et al., 2004).  In these systems, the aims are to decrease the probability 
of the system hazardous behaviour and to keep the systems functioning even in the occurrence of 
one or more faults.

Redundancy is one of the important methods in achieving fault-tolerance and it can be 
implemented in three forms, including static (fault masking methods), dynamic (fault detection, 
fault diagnosis, fault isolation and fault location), and hybrid (masking faults and fault detection 
and location).

The aim of static redundancy is masking the effect of fault in the output of the system.  
N-Modular Redundancy (NMR) and N-Version Programming (NVP) are two principal methods of 
static redundancy in hardware and software, respectively.  Three modular redundancy (TMR) is 
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the simplest form of NMR which is formed from N=3 redundant modules and a voter unit which 
arbitrates among the modules’ outputs (Fig. 1).

Fig. 1: TMR System

Voter performs a voting algorithm in order to arbitrate among different outputs of redundant 
modules or versions and to mask the effect of fault(s) from the system output.  Many voting 
algorithms have been defined in the literature, each with particular strengths and weaknesses that 
make a particular voting algorithm more proper than the other one in a given application.

Plurality voter is one of several voting algorithms which is applied in the fault-tolerant control 
systems.  The main advantages of this voter are high reliability (Blough et al., 1990) and high 
availability (Yacoub et al., 2002), in comparison with other popular voting algorithms.  On contrary 
to some severe voters like majority and its extended forms, such as smoothing and predictive, 
plurality voter can operate flexibly if less than majority elements are in agreement (Latif-Shabgahi 
et al., 2004).

In this paper, the parallel algorithms are used on the EREW shared-memory systems to present 
a new generation of voter – and this is known as Parallel Plurality Voter (PPV) – which provides the 
plurality voter extension without enlarging the calculations, and is suitable for large-scale systems 
and with optimal processing time.

The current paper is organized in the following manner.  In the next section, background and 
related works are described, whereas the sequential and parallel plurality voting algorithms are 
presented in later sections.  Result and discussion section deals with the performance analysis of 
the new algorithm and its comparison with the sequential algorithm.  Finally, the conclusions and 
future works are explained.

BACKGROUND AND RELATED WORKS
Voting algorithms have been extensively applied in situations where choosing an accurate result 
out of the outputs of several redundant modules is required.  Generalized voters including majority, 
plurality, median and weighted average were first introduced by Lorczak et al (1989).

Majority voter is perhaps the most applicable voter that produces an output among n variant 
results, where at least n 1 2+^ h6 @ variant results agree (Latif-Shabgahi et al., 2004).  Meanwhile, 
plurality voter is a relax form of majority voter, in which even if less than n 1 2+^ h6 @ variant results 
are in agreement, voter can report consensus.  Thus, plurality and majority are actually extended 
forms of m-out-of-n voting, in which at least m modules out of n modules should be in agreement; 
otherwise, voter cannot produce the output.  The m-out-of-n voting method is a suitable choice 
for the systems where the number of the voter inputs is large.  The other generalized voter is the 
median voter that always chooses the mid-value of voter inputs as the system output.  The most 
significant limitation of this particular algorithm is that the number of the voter inputs is assumed 
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to be odd (Lorczak et al., 1989).  In the weighted average algorithm, the weighted mean of the 
input values is calculated as the voting result.  The weight value is assigned to each voter input in 
various methods (Latif-Shabgahi, 2004; Latif-Shabgahi et al., 2003; Lorczak et al., 1989; Tong et 
al., 1991), and then, the calculated weights, wi, are used to provide the voter output, y=∑wi.xi/∑wi, 
where xi refers to each voter inputs and y is the voter output.  Average voter is a special case of the 
weighted average voter in which all the weights are assumed to be equal to 1/n.  Two latest methods 
amalgamate variant results to make the output (Latif-Shabgahi et al., 2004); as a result, the output 
may be clearly different from the input values.  Although this feature is useful in such applications 
as image processing filters (to merge the results of the adjacent pixels), in many safety critical and 
high reliable systems the voters like majority, plurality, and median are preferred, particularly due 
to their selecting strategy.

Based on the type of agreement, Plurality voter can be exact or inexact.  In the exact voting, 
agreement achievement requires that the redundant results to be exactly the same, while in the inexact 
voting, agreement means that the multiple results might be different.  Nevertheless, their difference 
from each other is smaller than a predefined, application specific threshold (Latif-Shabgahi et al., 
2004).  Although inexact voting is closer to real conditions, to avoid the complexities due to selecting 
threshold, and to simply design parallel algorithm, the research is limited to the exact plurality voter.

The other important issue about all the above mentioned voters, including plurality, is their 
dependency on the structure of the input space (Parhami, 1992, 1994).  Hence, while the number 
of voter inputs increases, there will be increases in the complexity of calculations, in addition to 
harmful effects on the speed of processing in the control system.

To address the problems of plurality voter mentioned, an effective parallel plurality algorithm 
was proposed based on the shared memory EREW by using the parallel algorithms.

PARALLEL ALGORITHM IN A SHAREDMEMORY SYSTEM
So far, parallel voters have been taken into account in the studies by several authors (Karimi et 
al., 2010; Lei et al., 1993; Parhami, 1996).  In addition, an optimal parallel average voter has been 
designed and analyzed in Karimi et al. (2010).  It has also been demonstrated that the time complexity 
of the mentioned algorithm is O(log n) with n/log n processors in an EREW shared memory system.  
In Lei et al. (1993), an efficient parallel algorithm was proposed to find the majority element in 
shared-memory and message passing parallel systems and its time complexity was determined, 
while an approach for the parallelized m-out-of-n voting through divide-and-conquer strategy was 
presented and analyzed in Parhami (1996).

Employing parallel algorithms is of the beneficial techniques to address the problems of 
sequential plurality voter for large object space applications such as public health systems, 
geographical information systems, Data Fusion, Mobile Robots, Sensor Networks, etc.  Meanwhile, 
conducting large calculative operations using parallel algorithms is faster due to the modern 
processors, compared to when such operations are conducted by sequential algorithm.  Moreover, 
multiple processing resources typically available in the applications dealing with a large number 
of inputs can be utilized for performing parallel voting algorithm (Parhami, 1996).

In this section, a new parallel plurality voting algorithm is presented on EREW shared-memory 
systems.  First, sequential plurality voting is introduced and this is followed by introducing and 
describing the parallel plurality algorithm with inspirations from the functions of this algorithm and 
using divide-and-conquer method and Brent’s theorem.  Divide-and-conquer strategy and Brent’s 
theorem are used in the designation and the optimization of the parallel plurality voting algorithm, 
respectively.  To compare the new algorithm with plurality voter in this research, the asymptotic 
analysis was employed.
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Sequential Plurality Voting
The algorithm for the sequential plurality voter in totally ordered space for n inputs is presented in 
Parhami (1994), as follows:

Procedure Exact Sequential Plurality Voting (Totally Ordered)

Sort (ascending order) in place the set of records (xi , vi) with xi as key. Use the end –marker 
(xn+1, vn+1) = (∞, 0).

y:=z:=x1;
u:=w:=v1;
For i=2 to n+1   do

While xi=z do
u:=u+vi;
i:=i+1;

End While.
If u>w Then

w:=u;
y:=z;

End If.
z:=xi;
u:=vi;

End For.

End.//end of procedure//

Parallel Plurality Voting
Basically, there are two architectures for the multi-processor systems.  One is the shared-memory 
multi-processor system and the other is message passing (Lei et al., 1993).  In a shared-memory 
parallel system, it is assumed that n processor has either shared the public working space or has a 
common public memory.

To present the parallel plurality voting (PPV) in the PRAM machines with EREW shared-
memory technology, the following assumptions are taken into account:
• Array A [1...n] with n elements, comprises a1, a2, …, an ,where each ai , i=1…n,  is the output 

of  ith module.  
• The number of redundant modules, n, is considered as the power of 2.
• Array A is divided to p= (n/log n) sub-arrays each of which contains at most log n element.
• Divide-and-conquer method is used to implement the algorithm. 
• For enhancing the algorithm, the number of required processors is assumed equal to the number 

of sub-arrays i.e. p.
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The pseudo-code of our optimal parallel plurality voter (PPV) is presented as follows:

Pseudo-code of parallel plurality voter
Procedure Exact Parallel-Plurality Voting (Totally Ordered Space)

Input: X is an array of the n elements x1,x2,…,xn  where n=2k .
Output: Return Y as the output of the Parallel Plurality Voting (PPV).
Step 1.  // Partitioning X //
X is subdivided into 

log
p n

n
=  subsequence’s Xi of length log n each, where 1≤i≤p;

Step 2. // Find the number of iterative elements (k) in each partition //

(2.1) k ← 1

(2.2) For i=1 to p do in Parallel
Zi ← X[(i-1)log n +1] 
ui ← 1     // set tally for each element //

For j=((i-1)log n +2) To Min{i*log n, n} Do
If  Xj=Zi  Then

Find iterative Elements in each partition.
ui ← ui +1   // update tally //

Else
k ← k+1
Zk ← Xj

uk ← vj

End If.
End For.

End For.
Step 3.

(3.1) IF k=n Then   // n is the number of elements //
“There is no plurality agreement”

Else

Z is subdivided into 
log

p k
k

=  subsequence’s Zi of

Length (log k) each, where 1≤i≤p;
(3.2) Broadcast Zi to processor Pi

(3.3) L← 1
// Find Repetitive Elements in other partitions and update its tally //

(3.4) For i=0 to logp 1-^ h  do
For j=1 to p do in Parallel

IF ( j is Odd) Then
Tj ← Z[(j-1)*log k +1]
∀ S ∈ {((j-1)*log k +2) and Min {2(i+j)*log k,(j-1)k}}
Merge each of pair subsequence (Tj ,Tj+1) and do in Parallel.

IF Tj=Zs  Then
uj ← uj +1
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Else
W(0,L) ← Tj; W(1,L) ← uj;
L ← L+1; Tj=Zs; uj ← us

End IF.
End IF.

End for.
End for.

// Matrix W is an amalgamation of array X and the number of each element iteration(tally) //
Step4.

(4.1) For i=1 to (L/log L)  do in Parallel
Y(0,i) ← W(0, (i-1)*log L +1)
Y(1,i) ← W(1, (i-1)*log L +1)

For j=((i-1)*log L +2) To Min{i*log L, L} do
If Y(1,j)> Y(1,i)  Then

Y(1,i) ← Y(1,j)
Y(0,i) ← Y(0,j)

End If.
End For.

End For.
// Return the Result if PPV exists //
(4.2) For i=0 to log

logL
L 1-c mc m  do

For j=1 to (L/log L) do in Parallel
If ( j is Odd) Then

If Y(1,(j-1)*log L +1))> Y(1,(j*log L +1)) Then
Result ← Y(0,(j-1)*log L +1))

Else
Result ← Y(0,(j*log L +1))

End IF.
End IF.

End For.
End For.

End.

In next section, the four steps of the algorithm PPV are examined and compared with the time 
complexity of the sequential algorithm given in Sequential Plurality Voting section.  In order to define 
an optimal parallel plurality voting with less time complexity and minimal number of processors, the 
Brent’s theorem (Brent, 1973) was used to partition the input elements into predetermined groups 
in the PRAM systems with p processor.

RESULTS AND DISCUSSION
In this section, both the parallel and sequential plurality voting algorithms introduced in previous 
sections were analyzed by computing the complexity of the algorithms and discussions on each 
step in order to highlight the efficiency of the new parallel algorithm.  Hence, to do so, Ts(n) is 
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defined as the function of executing time of the sequential plurality voting algorithm and Tp(n) as 
the function of the executing time of the parallel voting algorithm in which p is the number of the 
processors.  As mentioned in sub-section of Sequential Plurality Voting, the sequential plurality 
voter needs the time complexity Ts(n)=O(n log n), while parallel algorithm consumes the constant 
time of O(1) to divide array X into p sub-arrays (partitioning X) having the maximal length of (log 
n) which has been indicated in step 1 of PPV.

In order to find the number of iterative elements in array X, i.e. the value of counter k in each 
partition, p, there is a need to time complexity of O(log n) in step 2.  In step 3, if value k is equivalent 
to the number of inputs of array X, the algorithm will no longer have any result because it does not 
achieve plurality agreement.  The time complexity of step 3.1 is O(1), other than if the value k is 
opposite to n, the number of the countered elements is arranged, which are stored as matrix Z in 
step 2, into p partitions by using the approach of step 1.  The time complexities of the procedures 
in steps 3.2, 3.3 and 3.4 are respectively O(1), O(1) and log

log k
k

Oc m or O(log k), which is smaller 
than or equal to O(log n).

The result of step 3 is matrix W in which row zero refers to the value of algorithm’s input, 
and the first row represents the tally of each element in the partition.  In step 4, the later row in 
several partitions should be compared to find the iterative elements (step 4.1).  Finally, the plurality 
element in step 4.2 is possibly considered.  The procedures in step 4 totally require O(log l)<O(log 
k)<O(log n), and therefore:

Tp(n)= O(1)+O(log n)+ O(log k)+ O(log l). (1)

It is concluded that the totally complexity of the parallel plurality voting for l ≤ k ≤ n is:

Tp(n)=O(log n). (2)

Since the execution time of the parallel plurality voter is O(log n), it is able to run faster than 
the sequential plurality voter with the complexity of Ω(n log n).  Furthermore, it can be obviously 
seen that the total number of the required processors in the parallel algorithm does not exceed (n/
log n).  Hence, taking into account the execution time and number of processors needed, the cost 
and time complexity of the proposed algorithm are optimal. 

CONCLUSIONS
In this paper, an optimal parallel algorithm has been proposed to find the plurality agreement among 
the results of n redundant modules in the parallel shared-memory systems in the EREW model.  As 
seen in results and discussion, the execution time of the sequential algorithm is Ω(n log n), whereas 
it is O(log n) in the proposed parallel algorithm.  Hence, the time complexity of the parallel plurality 
voter is less than its sequential peer.

The parallel plurality voter has also been shown to resolve the problem associated with 
sequential plurality voter in dealing with a large number of inputs.  This parallel algorithm can 
be extended to unordered arrays that are implemented in future on Bus, Hyper Cube and Mesh 
typologies in the message passing systems.
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